Name:	
Start Time:	 _
End Time:	
Date	

Math 260 Quiz 9 (25 min)

1. (2 points) Are the vectors $\begin{bmatrix} 2 & 4 \\ -1 & 0 \end{bmatrix}$, $\begin{bmatrix} -3 & 6 \\ 2 & 0 \end{bmatrix}$, $\begin{bmatrix} -16 & 16 \\ 10 & 0 \end{bmatrix}$ linearly independent? Why or why not? If not, write the zero vector as a linear combination of these 3 vectors where not all coefficients are 0.

2. (2 points) Are the vectors $f(x) = e^x$ and $g(x) = x^2$ linearly independent as vectors in $F(-\infty, \infty)$? Why or why not?

Suppose scalars
$$c_1, c_2 \in \mathbb{R}$$
 exist such that
 $c_1 e^X + c_2 x^2 = 0$
plug in $x=0 \implies c_1 e^0 + c_2 (0)^2 = 0$
 $=> c_1 (1) + (c_2 (0)) = 0$
 $=> c_1 = 0$
plug in $x=1 \implies c_1 e^1 + c_2 (1)^2 = 0$
 $=> 0 \cdot e + c_2 (1) = 0$
 $=> c_2 = 0$

So $F(x) = e^{x}$ and $g(x) = x^{2}$ are linearly independent functions (in $F(-\infty,\infty)$). 3. (3 points) Show that the vectors $\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ form are both linearly independent and span \mathbb{R}^3 . (Hint: Use a theorem)

Let
$$A = \begin{bmatrix} 1 & 4 & 0 \\ 2 & 5 & 1 \\ 3 & 6 & 0 \end{bmatrix}$$
. Since $|A| = 6 \neq 0 = > A$ is inversible.

4. (3 points) Find a basis for \mathbb{R}^3 containing the vector $\begin{bmatrix} 5\\0\\-2 \end{bmatrix}$

Since dim
$$(IR^3) = 3$$
, we need 3 vectors.
 $I'II$ just add in vectors $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ (rondarly) chosen)

Let
$$A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & 3 & 1 \end{bmatrix}$$
. $1A| = 10 \neq 0$
 $= > A$ is invertible.

By a theorem, since A is invertible, the
columns of A are linearly independent
and spon
$$IR^3$$
.
So $B = \begin{cases} 5 \\ -2 \end{cases}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{cases}$ is a basis
for IR^3
containing $\begin{bmatrix} 5 \\ -2 \\ -2 \end{bmatrix}$.